| |
|
|
|
|
|
 |
| |
|
ºñ¾¾¹Î°ú¸³ [L-isoleucine , L-leucine , L-valine]
|
|
Àü¹®ÀǾàǰ | ºñ±Þ¿©
|
|
|
| |
 |
¾Ë¸²: |
µå·°ÀÎÆ÷¿¡¼´Â ÀǾàǰ ÀÎÅÍ³Ý ÆÇ¸Å¸¦ ÇÏÁö ¾Ê½À´Ï´Ù. |
|
|
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
À¯·áȸ¿ø °áÀç½Ã¿¡´Â º¸´Ù ´Ù¾çÇÑ ¾à¹°Á¤º¸¸¦
ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.
À¯·áÁ¤º¸¸ñ·ÏÀº Àü¹®È¸¿øÀ¸·Î
·Î±×ÀÎ ÇϽøé È®ÀÎ °¡´ÉÇÕ´Ï´Ù.
|
|
|
 | Çã°¡Á¤º¸ |
|
|
| Ç׸ñ |
³»¿ë |
û±¸ÄÚµå(KDÄÚµå) ºñ±Þ¿©Á¡°ËÄÚµå »óÇÑ±Ý¾× |
[A23054001]
[º¸ÇèÄڵ忡 µû¸¥ ¾àǰ±âº»Á¤º¸ Á÷Á¢Á¶È¸]
\0 ¿ø/4.74g/Æ÷(2006.01.01)(ÇöÀç¾à°¡)
\2,065 ¿ø/4.74g/Æ÷(2005.12.01)(º¯°æÀü¾à°¡)
[»óº´ÄÚµåÁ¶È¸]
[Áúº´ÄÚµåÁ¶È¸]
|
| ºü¸¥Á¶È¸ |
|
| È¿´ÉÈ¿°ú |
[ÀûÀÀÁõ º° °Ë»ö]
½Ä»ç ¼·Ãë·®ÀÌ ¸¹À½¿¡µµ ºÒ±¸Çϰí Àú¾ËºÎ¹Î Ç÷ÁõÀ» ³ªÅ¸³»´Â ´ë»óºÎÀü¼º °£°æº¯ ȯÀÚÀÇ Àú¾ËºÎ¹Î Ç÷ÁõÀÇ °³¼±
|
| ¿ë¹ý¿ë·® |
* Àý´ë ÀÓÀǺ¹¿ëÇÏÁö ¸¶½Ã°í ¹Ýµå½Ã ÀÇ»ç ¶Ç´Â ¾à»ç¿Í »ó´ãÇϽñ⠹ٶø´Ï´Ù.
[󹿾à¾î]
Åë»ó, ¼ºÀο¡ 1ȸ 1Æ÷¸¦ 1ÀÏ 3ȸ ½ÄÈÄ °æ±¸Åõ¿© ÇÑ´Ù.
|
| ±Ý±â |
¼±Ãµ¼º ºÐÁö¼â¾Æ¹Ì³ë»ê ´ë»çÀÌ»óÀ» °¡Áø ȯÀÚ(°æ·Ã, È£ÈíÀåÇØ µîÀÌ ³ªÅ¸³¯ ¿ì·Á°¡ ÀÖ´Ù)
|
| ÀÌ»ó¹ÝÀÀ |
1) ¼Òȱâ°è : °¡²û º¯ºñ, ¼³»ç, º¹¸¸°¨, º¹ºÎºÒÄè°¨, ±¸¿ª, º¹Åë, ¼Ó¾²¸², ½Ä¿åºÎÁø µîÀÇ Áõ»óÀÌ ³ªÅ¸³¯ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ Áõ»óÀÌ º¸ÀÌ´Â °æ¿ì¿¡´Â ÀÌ ¾àÀÇ Åõ¿©·®À» °¨·®Çϰųª Åõ¿©¸¦ ÀϽà Áß´ÜÇÑ´Ù.
2) ½ÅÀå : ¶§¶§·Î BUN »ó½Â, Ç÷Áß Å©·¹¾ÆÆ¼´Ñ »ó½Â µîÀÇ ½Å±â´É Àå¾Ö°¡ ÀϾ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ Áõ»óÀÌ º¸ÀÌ´Â °æ¿ì¿¡´Â ÀÌ ¾àÀÇ Åõ¿©·®À» °¨·®Çϰųª Åõ¿©¸¦ ÀϽÃÁß´ÜÇÑ´Ù.
3) ´ë»ç : ¶§¶§·Î Ç÷Áß ¾Ï¸ð´Ï¾ÆÄ¡ÀÇ »ó½Â µîÀÇ ´ë»çÀå¾Ö°¡ ³ªÅ¸³¯ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ Áõ»óÀÌ º¸ÀÌ´Â °æ¿ì¿¡´Â ÀÌ ¾àÀÇ Åõ¿©·®À» °¨·®Çϰųª Åõ¿©¸¦ ÀϽÃÁß´Ü ÇÑ´Ù.
4) °£Àå : ¶§¶§·Î AST, ALT, Ç÷Áß ºô¸®·çºó »ó½ÂÀÌ °üÂû µÉ ¼ö ÀÖ´Ù.
5) ÇǺΠ: ¶§¶§·Î ¹ßÁø, °¡·Á¿ò µîÀÌ ³ªÅ¸³¯ ¼ö ÀÖ´Ù.
6) ±âŸ : ¶§¶§·Î ±Çۨ, ºÎÁ¾(¾ó±¼, ÇÏÁö µî)ÀÌ ³ªÅ¸³¯ ¼ö ÀÖ´Ù.
|
|
|
 | Á¤º¸¿ä¾à |
|
|
|
µå·°ÀÎÆ÷ ÀǾàǰ ¿ä¾à/»ó¼¼Á¤º¸
|
|
 | ÄÚµå ¹× ºÐ·ùÁ¤º¸ |
|
|
| Ç׸ñ |
³»¿ë |
| BIT ¾àÈ¿ºÐ·ù |
´ãÁó»êºÐºñÃËÁøÁ¦ & °£º¸È£Á¦ (Cholelitholitics & Hepatic Protectors)
|
| ATC ÄÚµå |
PROTEIN SUPPLEMENTS / V06B
[ÄÚµåºÐ·ù»ó¼¼¼³¸í]
[ATCÄÚµå¿¹Ãø]
|
| º¹ÁöºÎºÐ·ùÄÚµå |
325 (´Ü¹é¾Æ¹Ì³ë»êÁ¦Á¦ )
|
| Drugs By Indication |
[Àüüº¸±â]
|
| Drugs By Classification |
[Àüüº¸±â]
|
|
|
 | Á¦Ç°Á¤º¸ |
|
|
|
|
 | º¹¾àÁ¤º¸ |
|
|
|
|
|
 | ½É»çÁ¤º¸ |
|
|
|
|
 | ÇмúÁ¤º¸ |
|
|
| Ç׸ñ |
³»¿ë |
| DUR (ÀǾàǰ»ç¿ëÆò°¡) |
º´¿ë±Ý±â :
°í½ÃµÈ º´¿ë±Ý±â ³»¿ëÀº ¾ø½À´Ï´Ù.
[»óÈ£ÀÛ¿ë/º´¿ë±Ý±â°Ë»ö]
¿¬·É´ë±Ý±â :
°í½ÃµÈ ¿¬·É±Ý±â ³»¿ëÀº ¾ø½À´Ï´Ù.
[¿¬·É´ë±Ý±â»ó¼¼°Ë»ö]
|
| Mechanism of Action |
L-isoleucine¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ (Applies to Valine, Leucine and Isoleucine) This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates. The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic. There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.
L-leucine¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates. The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic. There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.
L-valine¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ (Applies to Valine, Leucine and Isoleucine) This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates. The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic. There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.
|
| Pharmacology |
L-isoleucine¿¡ ´ëÇÑ Pharmacology Á¤º¸ They provide ingredients for the manufacturing of other essential biochemical components in the body, some of which are utilized for the production of energy, stimulants to the upper brain and helping you to be more alert.
L-leucine¿¡ ´ëÇÑ Pharmacology Á¤º¸ An essential amino acid. (Claim) Leucine helps with the regulation of blood-sugar levels, the growth and repair of muscle tissue (such as bones, skin and muscles), growth hormone production, wound healing as well as energy regulation. It can assist to prevent the breakdown of muscle proteins that sometimes occur after trauma or severe stress. It may also be beneficial for individuals with phenylketonuria - a condition in which the body cannot metabolize the amino acid phenylalanine
L-valine¿¡ ´ëÇÑ Pharmacology Á¤º¸ L-valine is a branched-chain essential amino acid (BCAA) that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. Valine is one of three branched-chain amino acids (the others are leucine and isoleucine) that enhance energy, increase endurance, and aid in muscle tissue recovery and repair. This group also lowers elevated blood sugar levels and increases growth hormone production. Supplemental valine should always be combined with isoleucine and leucine at a respective milligram ratio of 2:1:2. It is an essential amino acid found in proteins; important for optimal growth in infants and for growth in children and nitrogen balance in adults. The lack of L-valine may influence the growth of body, cause neuropathic obstacle, anaemia. It has wide applications in the field of pharmaceutical and food industry.
|
| Absorption |
L-isoleucine¿¡ ´ëÇÑ Absorption Á¤º¸ Absorbed from the small intestine by a sodium-dependent active-transport process
L-valine¿¡ ´ëÇÑ Absorption Á¤º¸ Absorbed from the small intestine by a sodium-dependent active-transport process.
|
| Toxicity |
L-isoleucine¿¡ ´ëÇÑ Toxicity Á¤º¸ Symptoms of hypoglycemia, increased mortality in ALS patients taking large doses of BCAAs
L-valine¿¡ ´ëÇÑ Toxicity Á¤º¸ Symptoms of hypoglycemia, increased mortality in ALS patients taking large doses of BCAAs.
|
| Drug Interactions |
L-isoleucine¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Not Available
L-valine¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Not Available
|
CYP450 Drug Interaction |
[CYP450 TableÁ÷Á¢Á¶È¸]
|
| Drug Target |
[Drug Target]
|
| Description |
L-isoleucine¿¡ ´ëÇÑ Description Á¤º¸ An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of leucine. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. [PubChem]
L-leucine¿¡ ´ëÇÑ Description Á¤º¸ An essential branched-chain amino acid important for hemoglobin formation. [PubChem]
L-valine¿¡ ´ëÇÑ Description Á¤º¸ A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. [PubChem]
|
| Drug Category |
L-isoleucine¿¡ ´ëÇÑ Drug_Category Á¤º¸ Dietary supplementEssential Amino AcidsMicronutrient
L-leucine¿¡ ´ëÇÑ Drug_Category Á¤º¸ Dietary supplementEssential Amino AcidsMicronutrient
L-valine¿¡ ´ëÇÑ Drug_Category Á¤º¸ Dietary supplementsEssential Amino AcidsMicronutrients
|
| Smiles String Canonical |
L-isoleucine¿¡ ´ëÇÑ Smiles_String_canonical Á¤º¸ CCC(C)C(N)C(O)=O
L-leucine¿¡ ´ëÇÑ Smiles_String_canonical Á¤º¸ CC(C)CC(N)C(O)=O
L-valine¿¡ ´ëÇÑ Smiles_String_canonical Á¤º¸ CC(C)C(N)C(O)=O
|
| Smiles String Isomeric |
L-isoleucine¿¡ ´ëÇÑ Smiles_String_isomeric Á¤º¸ CC[C@H](C)[C@H](N)C(O)=O
L-leucine¿¡ ´ëÇÑ Smiles_String_isomeric Á¤º¸ CC(C)C[C@@H](N)C(O)=O
L-valine¿¡ ´ëÇÑ Smiles_String_isomeric Á¤º¸ CC(C)[C@H](N)C(O)=O
|
| InChI Identifier |
L-isoleucine¿¡ ´ëÇÑ InChI_Identifier Á¤º¸ InChI=1/C6H13NO2/c1-3-4(2)5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t4-,5-/m0/s1/f/h8H
L-leucine¿¡ ´ëÇÑ InChI_Identifier Á¤º¸ InChI=1/C6H13NO2/c1-4(2)3-5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/f/h8H
L-valine¿¡ ´ëÇÑ InChI_Identifier Á¤º¸ InChI=1/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8)/t4-/m0/s1/f/h7H
|
| Chemical IUPAC Name |
L-isoleucine¿¡ ´ëÇÑ Chemical_IUPAC_Name Á¤º¸ (2S,3S)-2-amino-3-methylpentanoic acid
L-leucine¿¡ ´ëÇÑ Chemical_IUPAC_Name Á¤º¸ 2-amino-4-methylpentanoic acid
L-valine¿¡ ´ëÇÑ Chemical_IUPAC_Name Á¤º¸ (2S)-2-amino-3-methylbutanoic acid
|
|
|
 | »ç¿ëÀÚÄÁÅÙÃ÷ |
|
|
|
|
|
-
ÃÖ±ÙÁ¤º¸¼öÁ¤ÀÏ 2023-07-01
-
º» ¼öÁ¤ÀÏ Á¤º¸´Â Çã°¡Á¤º¸ ÀÌ¿ÜÀÇ ±âŸÁ¤º¸ ¼öÁ¤ÀÏÀ» ÀǹÌÇϹǷÎ, Çã°¡Á¤º¸¼öÁ¤ÀÏÀº º»¹®¿¡ Ç¥±âµÈ ³¯Â¥¸¦ ÂüÁ¶ÇϽñ⠹ٶø´Ï´Ù.
|
|
¾Ë¸² |
»ó¼¼Á¤º¸´Â ½ÄǰÀǾàǰ¾ÈÀüóÀÇ Á¦Ç°Çã°¡»çÇ×À» Åä´ë·Î ÀÛ¼ºµÇ¾úÀ¸¸ç ¿ä¾àÁ¤º¸´Â »ó¼¼Á¤º¸ ¹× ±âŸ¹®ÇåÀ» ±â¹ÝÀ¸·Î µå·°ÀÎÆ÷¿¡¼ ÆíÁýÇÑ ³»¿ëÀÔ´Ï´Ù. Á¦Ç°Çã°¡»çÇ×ÀÇ ¸ñÂ÷¿Í ´Ù¼Ò »óÀÌÇÒ ¼ö ÀÖ½À´Ï´Ù. |
|
°æ°í |
µå·°ÀÎÆ÷ ÀǾàÇмúÁ¤º¸´Â ½ÄǰÀǾàǰ¾ÈÀüóÀÇ Á¦Ç°Çã°¡»çÇ×, Çмú¹®Çå, Á¦¾àȸ»ç Á¦°øÁ¤º¸ µîÀ» ±Ù°Å·Î ÀÛ¼ºµÈ Âü°í Á¤º¸ÀÔ´Ï´Ù.
Á¤º¸ÀÇ Á¤È®¼ºÀ» À§ÇØ ³ë·ÂÇϰí ÀÖÀ¸³ª ÆíÁý»óÀÇ ¿À·ù, Çã°¡»çÇ× º¯°æ, Ãß°¡ÀûÀÎ Çмú¿¬±¸ ¶Ç´Â Àӻ󿬱¸ ¹ßÇ¥ µîÀ¸·Î ÀÎÇØ ¹ß»ýÇÏ´Â ¹®Á¦¿¡ ´ëÇØ µå·°ÀÎÆ÷´Â
Ã¥ÀÓÀ» ÁöÁö ¾Ê½À´Ï´Ù. ÀÚ¼¼ÇÑ ³»¿ëÀº ¡°Ã¥ÀÓÀÇ ÇÑ°è ¹× ¹ýÀû°íÁö¡±¸¦ ÂüÁ¶ÇØ ÁֽʽÿÀ.
¹Ýµå½Ã Á¦Á¶¡¤¼öÀÔ»ç, ÆÇ¸Å»ç, ÀÇ»ç, ¾à»ç¿¡°Ô ÃÖÁ¾ÀûÀ¸·Î È®ÀÎÇϽñ⠹ٶø´Ï´Ù.
ÀüÈ: 02-3486-1061 ¤Ó À̸ÞÀÏ: webmaster@druginfo.co.kr
|
|
¾Æ·¡ÀÇ ³»¿ëÀ» Æ÷ÇÔÇÑ Àüü µ¥ÀÌÅ͸¦ º¸½Ã·Á¸é
¿©±â·Î À̵¿ÇϽñ⠹ٶø´Ï´Ù.
º´¿ë±Ý±â ¹× ƯÁ¤¿¬·É´ë ±Ý±â ¼ººÐ
[ÀǾàǰº´¿ë/¿¬·É´ë±Ý±â °í½Ã±Ù°Å·Î ¹Ù·Î°¡±â] Á¦¸ñ ¾øÀ½
2008³â 8¿ù 1ÀÏ ¾à°¡ÈÀÏ»ó 8¿ù´Þ ½Å±ÔµîÀç ¹× »èÁ¦µÇ´Â ǰ¸ñ Æ÷ÇÔÇÑ º´¿ë¿¬·É ±Ý±â ǰ¸ñ¸®½ºÆ® ±âÁØ
1. ÇöÀç °Ë»öÇÑ Á¦Ç°¿¡ ´ëÇÑ º´¿ë±Ý±â Á¦Ç° Á¸Àç¿©ºÎ ¹× °Ë»ö
ÇöÀç ÀÌÁ¦Ç°¿¡ ´ëÇÑ º´¿ë±Ý±â¿¡ ÇØ´çÇϴ û±¸Äڵ庰 Á¦Ç°³»¿ª °øÁö³»¿ëÀÌ ¾ø½À´Ï´Ù
2. ¿¬·É´ë±Ý±â Á¸Àç¿©ºÎ
ÇöÀç ÀÌÁ¦Ç°¿¡ ´ëÇÑ ¿¬·É±Ý±â¿¡ ÇØ´çÇϴ û±¸Äڵ庰 °øÁö³»¿ëÀÌ ¾ø½À´Ï´Ù
|
|
|
|