calcium¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. More than 500 human proteins are known to bind or transport calcium. The skeleton acts as a major mineral storage site for the element and releases Ca2+ ions into the bloodstream under controlled conditions. Circulating calcium is either in the free, ionized form or bound to blood proteins such as serum albumin. Parathyroid hormone (secreted from the parathyroid gland) regulates the resorption of Ca2+ from bone. Calcitonin stimulates incorporation of calcium in bone, although this process is largely independent of calcitonin. Although calcium flow to and from the bone is neutral, about 5 mmol is turned over a day. Bone serves as an important storage point for calcium, as it contains 99% of the total body calcium. Low calcium intake may also be a risk factor in the development of osteoporosis. The best-absorbed form of calcium from a pill is a calcium salt like carbonate or phosphate. Calcium gluconate and calcium lactate are absorbed well by pregnant women. Seniors absorb calcium lactate, gluconate and citrate better unless they take their calcium supplement with a full breakfast. The currently recommended calcium intake is 1,500 milligrams per day for women not taking estrogen and 800 milligrams per day for women on estrogen. There is close to 300 milligrams of calcium in one cup of fluid milk. Calcium carbonate is currently the best and least expensive form of calcium supplement available. Biotin¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ Biotin is necessary for the proper functioning of enzymes that transport carboxyl units and fix carbon dioxide, and is required for various metabolic functions, including gluconeogenesis, lipogenesis, fatty acid biosynthesis, propionate metabolism, and catabolism of branched-chain amino acids. Calcium¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. More than 500 human proteins are known to bind or transport calcium. The skeleton acts as a major mineral storage site for the element and releases Ca2+ ions into the bloodstream under controlled conditions. Circulating calcium is either in the free, ionized form or bound to blood proteins such as serum albumin. Parathyroid hormone (secreted from the parathyroid gland) regulates the resorption of Ca2+ from bone. Calcitonin stimulates incorporation of calcium in bone, although this process is largely independent of calcitonin. Although calcium flow to and from the bone is neutral, about 5 mmol is turned over a day. Bone serves as an important storage point for calcium, as it contains 99% of the total body calcium. Low calcium intake may also be a risk factor in the development of osteoporosis. The best-absorbed form of calcium from a pill is a calcium salt like carbonate or phosphate. Calcium gluconate and calcium lactate are absorbed well by pregnant women. Seniors absorb calcium lactate, gluconate and citrate better unless they take their calcium supplement with a full breakfast. The currently recommended calcium intake is 1,500 milligrams per day for women not taking estrogen and 800 milligrams per day for women on estrogen. There is close to 300 milligrams of calcium in one cup of fluid milk. Calcium carbonate is currently the best and least expensive form of calcium supplement available. Cholecalciferol¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ The first step involved in the activation of vitamin D3 is a 25-hydroxylation which is catalysed by the 25-hydroxylase in the liver and then by other enzymes. The mitochondrial sterol 27-hydroxylase catalyses the first reaction in the oxidation of the side chain of sterol intermediates. The active form of vitamin D3 (calcitriol) binds to intracellular receptors that then function as transcription factors to modulate gene expression. Like the receptors for other steroid hormones and thyroid hormones, the vitamin D receptor has hormone-binding and DNA-binding domains. The vitamin D receptor forms a complex with another intracellular receptor, the retinoid-X receptor, and that heterodimer is what binds to DNA. In most cases studied, the effect is to activate transcription, but situations are also known in which vitamin D suppresses transcription. Calcitriol increases the serum calcium concentrations by: increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein. Cyanocobalamin¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells. Magnesium¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ Not Available
Pharmacology
Biotin¿¡ ´ëÇÑ Pharmacology Á¤º¸ Biotin is a water-soluble B-complex vitamin which is composed of an ureido ring fused with a tetrahydrothiophene ring. A valeric acid substituent is attached to one of the carbon atoms of the tetrahydrothiophene ring. Biotin is used in cell growth, the production of fatty acids, metabolism of fats, and amino acids. It plays a role in the Kreb cycle, which is the process in which energy is released from food. Biotin not only assists in various metabolic chemical conversions, but also helps with the transfer of carbon dioxide. Biotin is also helpful in maintaining a steady blood sugar level. Biotin is often recommended for strengthening hair and nails. Consequenty, it is found in many cosmetic and health products for the hair and skin. Biotin deficiency is a rare nutritional disorder caused by a deficiency of biotin. Initial symptoms of biotin deficiency include: Dry skin, Seborrheic dermatitis, Fungal infections, rashes including erythematous periorofacial macular rash, fine and brittle hair, and hair loss or total alopecia. If left untreated, neurological symptoms can develop, including mild depression, which may progress to profound lassitude and, eventually, to somnolence; changes in mental status, generalized muscular pains (myalgias), hyperesthesias and paresthesias. The treatment for biotin deficiency is to simply start taking some biotin supplements. A lack of biotin in infants will lead to a condition called seborrheic dermatitis or "cradle cap". Biotin deficiencies are extremely rare in adults but if it does occur, it will lead to anemia, depression, hair loss, high blood sugar levels, muscle pain, nausea, loss of appetite and inflamed mucous membranes. Cholecalciferol¿¡ ´ëÇÑ Pharmacology Á¤º¸ Cholecalciferol (vitamin D3) is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. The classical manifestations of vitamin D deficiency is rickets, which is seen in children and results in bony deformaties including bowed long bones. Deficiency in adults leads to the disease osteomalacia. Both rickets and osteomalacia reflect impaired mineralization of newly synthesized bone matrix, and usually result from a combination of inadequate exposure to sunlight and decreased dietary intake of vitamin D. Common causes of vitamin D deficiency include genetic defects in the vitamin D receptor, severe liver or kidney disease, and insufficient exposure to sunlight. Vitamin D plays an important role in maintaining calcium balance and in the regulation of parathyroid hormone (PTH). It promotes renal reabsorption of calcium, increases intestinal absorption of calcium and phosphorus, and increases calcium and phosphorus mobilization from bone to plasma. Cyanocobalamin¿¡ ´ëÇÑ Pharmacology Á¤º¸ Cyanocobalamin (Vitamin B12) is a water-soluble organometallic compound with a trivalent cobalt ion bound inside a corrin ring. It is needed for nerve cells and red blood cells, and to make DNA. Vitamin B12 deficiency is the cause of several forms of anemia.
Protein Binding
Cholecalciferol¿¡ ´ëÇÑ ´Ü¹é°áÇÕ Á¤º¸ 50% to 80% Cyanocobalamin¿¡ ´ëÇÑ ´Ü¹é°áÇÕ Á¤º¸ Very high (to specific plasma proteins called transcobalamins); binding of hydroxocobalamin is slightly higher than cyanocobalamin.
Half-life
Cholecalciferol¿¡ ´ëÇÑ ¹Ý°¨±â Á¤º¸ Several weeks Cyanocobalamin¿¡ ´ëÇÑ ¹Ý°¨±â Á¤º¸ Approximately 6 days (400 days in the liver).
Absorption
Biotin¿¡ ´ëÇÑ Absorption Á¤º¸ Systemic - approximately 50% Cholecalciferol¿¡ ´ëÇÑ Absorption Á¤º¸ Readily absorbed Cyanocobalamin¿¡ ´ëÇÑ Absorption Á¤º¸ Readily absorbed in the lower half of the ileum.
Biotin¿¡ ´ëÇÑ Biotransformation Á¤º¸ Not Available Cholecalciferol¿¡ ´ëÇÑ Biotransformation Á¤º¸ Within the liver, cholecalciferal is hydroxylated to calcidiol (25-hydroxycholecalciferol) by the enzyme 25-hydroxylase. Within the kidney, calcidiol serves as a substrate for 1-alpha-hydroxylase, yielding calcitriol (1,25-dihydroxycholecalciferol), the biologically active form of vitamin D3. Cyanocobalamin¿¡ ´ëÇÑ Biotransformation Á¤º¸ Hepatic
Toxicity
Biotin¿¡ ´ëÇÑ Toxicity Á¤º¸ Prolonged skin contact may cause irritation. Cholecalciferol¿¡ ´ëÇÑ Toxicity Á¤º¸ Hypercalcemia - Early symptoms of hypercalcemia, include nausea and vomiting, weakness, headache, somnolence, dry mouth, constipation, metallic taste, muscle pain and bone pain. Late symptoms and signs of hypercalcemia, include polyuria, polydipsia, anorexia, weight loss, nocturia, conjunctivitis, pancreatitis, photophobia, rhinorrhea, pruritis, hyperthermia, decreased libido, elevated BUN, albuminuria, hypercholesterolemia, elevated ALT (SGPT) and AST (SGOT), ectopic calcification, nephrocalcinosis, hypertension and cardiac arrhythmias. Cyanocobalamin¿¡ ´ëÇÑ Toxicity Á¤º¸ Anaphylactic reaction (skin rash, itching, wheezing)-after parenteral administration. ORL-MUS LD50 > 8000 mg/kg
Drug Interactions
calcium¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Alendronate Formation of non-absorbable complexesAmprenavir The antiacid decreases the absorption of amprenavirAtazanavir This gastric pH modifier decreases the levels/effects of atazanavirChloroquine The antiacid decreases the absorption of chloroquineCiprofloxacin Formation of non-absorbable complexesDapsone Formation of non-absorbable complexesDelavirdine The antiacid decreases the effect of delavirdineDemeclocycline Formation of non-absorbable complexesDoxycycline Formation of non-absorbable complexesEnoxacin Formation of non-absorbable complexesFosamprenavir The antiacid decreases the absorption of amprenavirGrepafloxacin Formation of non-absorbable complexesIbandronate Formation of non-absorbable complexesIndinavir The antiacid decreases the absorption of indinavirItraconazole The antacid decreases the effect of the imidazoleKetoconazole The antacid decreases the effect of the imidazoleLevofloxacin Formation of non-absorbable complexesLevothyroxine Calcium decreases absorption of levothyroxineLomefloxacin Formation of non-absorbable complexesMethacycline Formation of non-absorbable complexesMinocycline Formation of non-absorbable complexesMoxifloxacin Formation of non-absorbable complexesNorfloxacin Formation of non-absorbable complexesOfloxacin Formation of non-absorbable complexesOxytetracycline Formation of non-absorbable complexesPefloxacin Formation of non-absorbable complexesPolystyrene sulfonate Formation of non-absorbable complexesRisedronate Formation of non-absorbable complexesTetracycline Formation of non-absorbable complexesTrovafloxacin Formation of non-absorbable complexesClodronate Formation of non-absorbable complexesEtidronic acid Formation of non-absorbable complexesMycophenolate mofetil Formation of non-absorbable complexesTemafloxacin Formation of non-absorbable complexes Biotin¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Not Available Calcium¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Alendronate Formation of non-absorbable complexesAmprenavir The antiacid decreases the absorption of amprenavirAtazanavir This gastric pH modifier decreases the levels/effects of atazanavirChloroquine The antiacid decreases the absorption of chloroquineCiprofloxacin Formation of non-absorbable complexesDapsone Formation of non-absorbable complexesDelavirdine The antiacid decreases the effect of delavirdineDemeclocycline Formation of non-absorbable complexesDoxycycline Formation of non-absorbable complexesEnoxacin Formation of non-absorbable complexesFosamprenavir The antiacid decreases the absorption of amprenavirGrepafloxacin Formation of non-absorbable complexesIbandronate Formation of non-absorbable complexesIndinavir The antiacid decreases the absorption of indinavirItraconazole The antacid decreases the effect of the imidazoleKetoconazole The antacid decreases the effect of the imidazoleLevofloxacin Formation of non-absorbable complexesLevothyroxine Calcium decreases absorption of levothyroxineLomefloxacin Formation of non-absorbable complexesMethacycline Formation of non-absorbable complexesMinocycline Formation of non-absorbable complexesMoxifloxacin Formation of non-absorbable complexesNorfloxacin Formation of non-absorbable complexesOfloxacin Formation of non-absorbable complexesOxytetracycline Formation of non-absorbable complexesPefloxacin Formation of non-absorbable complexesPolystyrene sulfonate Formation of non-absorbable complexesRisedronate Formation of non-absorbable complexesTetracycline Formation of non-absorbable complexesTrovafloxacin Formation of non-absorbable complexesClodronate Formation of non-absorbable complexesEtidronic acid Formation of non-absorbable complexesMycophenolate mofetil Formation of non-absorbable complexesTemafloxacin Formation of non-absorbable complexes Cholecalciferol¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Not Available Cyanocobalamin¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Not Available Magnesium¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Alendronate Formation of non-absorbable complexesCiprofloxacin Formation of non-absorbable complexesClodronate Formation of non-absorbable complexesDemeclocycline Formation of non-absorbable complexesDoxycycline Formation of non-absorbable complexesEnoxacin Formation of non-absorbable complexesEtidronic acid Formation of non-absorbable complexesGatifloxacin Formation of non-absorbable complexesGemifloxacin Formation of non-absorbable complexesGrepafloxacin Formation of non-absorbable complexesIbandronate Formation of non-absorbable complexesLevofloxacin Formation of non-absorbable complexesLomefloxacin Formation of non-absorbable complexesMethacycline Formation of non-absorbable complexesMinocycline Formation of non-absorbable complexesMoxifloxacin Formation of non-absorbable complexesNorfloxacin Formation of non-absorbable complexesOfloxacin Formation of non-absorbable complexesOxytetracycline Formation of non-absorbable complexesPefloxacin Formation of non-absorbable complexesRisedronate Formation of non-absorbable complexesTrovafloxacin Formation of non-absorbable complexesTetracycline Formation of non-absorbable complexesTemafloxacin Formation of non-absorbable complexesAmprenavir The antiacid decreases the absorption of amprenavirChloroquine The antiacid decreases the absorption of chloroquineAtazanavir This gastric pH modifier decreases the levels/effects of atazanavirDelavirdine The antiacid decreases the absorption of delavirdineDihydroquinidine barbiturate The antiacid decreases the absorption of quinidineFosamprenavir The antiacid decreases the absorption of amprenavirIndinavir The antiacid decreases the absorption of indinavirQuinidine The antiacid decreases the absorption of quindineQuinidine barbiturate The antiacid decreases the absorption of quinidinePolystyrene sulfonate Risk of alkalosis in renal impairmentRosuvastatin The antiacid decreases the absorption of rosuvastatin
calcium¿¡ ´ëÇÑ Description Á¤º¸ Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. The skeleton acts as a major mineral storage site for the element and releases Ca2+ ions into the bloodstream under controlled conditions. Circulating calcium is either in the free, ionized form or bound to blood proteins such as serum albumin. Although calcium flow to and from the bone is neutral, about 5 mmol is turned over a day. Bone serves as an important storage point for calcium, as it contains 99% of the total body calcium. Low calcium intake may also be a risk factor in the development of osteoporosis. The best-absorbed form of calcium from a pill is a calcium salt like carbonate or phosphate. Calcium gluconate and calcium lactate are absorbed well by pregnant women. Seniors absorb calcium lactate, gluconate and citrate better unless they take their calcium supplement with a full breakfast. Biotin¿¡ ´ëÇÑ Description Á¤º¸ A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. [PubChem] Calcium¿¡ ´ëÇÑ Description Á¤º¸ Calcium plays a vital role in the anatomy, physiology and biochemistry of organisms and of the cell, particularly in signal transduction pathways. The skeleton acts as a major mineral storage site for the element and releases Ca2+ ions into the bloodstream under controlled conditions. Circulating calcium is either in the free, ionized form or bound to blood proteins such as serum albumin. Although calcium flow to and from the bone is neutral, about 5 mmol is turned over a day. Bone serves as an important storage point for calcium, as it contains 99% of the total body calcium. Low calcium intake may also be a risk factor in the development of osteoporosis. The best-absorbed form of calcium from a pill is a calcium salt like carbonate or phosphate. Calcium gluconate and calcium lactate are absorbed well by pregnant women. Seniors absorb calcium lactate, gluconate and citrate better unless they take their calcium supplement with a full breakfast. Cholecalciferol¿¡ ´ëÇÑ Description Á¤º¸ Derivative of 7-dehydroxycholesterol formed by ultraviolet rays breaking of the C9-C10 bond. It differs from ergocalciferol in having a single bond between C22 and C23 and lacking a methyl group at C24. [PubChem] Cyanocobalamin¿¡ ´ëÇÑ Description Á¤º¸ Cyanocobalamin (commonly known as Vitamin B12) is the most chemically complex of all the vitamins. Cyanocobalamin's structure is based on a corrin ring, which, although similar to the porphyrin ring found in heme, chlorophyll, and cytochrome, has two of the pyrrole rings directly bonded. The central metal ion is Co (cobalt). Cyanocobalamin cannot be made by plants or by animals, as the only type of organisms that have the enzymes required for the synthesis of cyanocobalamin are bacteria and archaea. Higher plants do not concentrate cyanocobalamin from the soil and so are a poor source of the substance as compared with animal tissues. Cyanocobalamin is naturally found in foods including meat (especially liver and shellfish), eggs, and milk products. [HMDB] Fumarate¿¡ ´ëÇÑ Description Á¤º¸ Not Available Magnesium¿¡ ´ëÇÑ Description Á¤º¸ Magnesium hydroxide is used primarily in "Milk of Magnesia", a white aqueous, mildly alkaline suspension of magnesium hydroxide formulated at about 8%w/v. Milk of magnesia is primarily used to alleviate constipation, but can also be used to relieve indigestion and heartburn. When taken internally by mouth as a laxative, the osmotic force of the magnesia suspension acts to draw fluids from the body and to retain those already within the lumen of the intestine, serving to distend the bowel, thus stimulating nerves within the colon wall, inducing peristalsis and resulting in evacuation of colonic contents.