Erythromycin¿¡ ´ëÇÑ Mechanism_Of_Action Á¤º¸ Erythromycin acts by penetrating the bacterial cell membrane and reversibly binding to the 50 S subunit of bacterial ribosomes or near the ¡°P¡± or donor site so that binding of tRNA (transfer RNA) to the donor site is blocked. Translocation of peptides from the ¡°A¡± or acceptor site to the ¡°P¡± or donor site is prevented, and subsequent protein synthesis is inhibited. Erythromycin is effective only against actively dividing organisms. The exact mechanism by which erythmromycin reduces lesions of acne vulgaris is not fully known: however, the effect appears to be due in part to the antibacterial activity of the drug.
Pharmacology
Erythromycin¿¡ ´ëÇÑ Pharmacology Á¤º¸ Erythromycin is produced by a strain of Streptomyces erythraeus and belongs to the macrolide group of antibiotics. After absorption, erythromycin diffuses readily into most body fluids. In the absence of meningeal inflammation, low concentrations are normally achieved in the spinal fluid, but the passage of the drug across the blood-brain barrier increases in meningitis. Erythromycin is excreted in breast milk. The drug crosses the placental barrier, but fetal plasma levels are low. Erythromycin is not removed by peritoneal dialysis or hemodialysis.
Erythromycin¿¡ ´ëÇÑ ´Ü¹é°áÇÕ Á¤º¸ Erythromycin is largely bound to plasma proteins, and the freely dissociating bound fraction after administration of erythromycin base represents 90% of the total erythromycin absorbed.
Half-life
Erythromycin¿¡ ´ëÇÑ ¹Ý°¨±â Á¤º¸ 1.5 hours
Absorption
Erythromycin¿¡ ´ëÇÑ Absorption Á¤º¸ Orally administered erythromycin base and its salts are readily absorbed in the microbiologically active form. Topical application of the ophthalmic ointment to the eye may result in absorption into the cornea and aqueous humor.
Biotransformation
Erythromycin¿¡ ´ëÇÑ Biotransformation Á¤º¸ Hepatic. Extensively metabolized - after oral administration, less than 5% of the administered dose can be recovered in the active form in the urine.
Toxicity
Erythromycin¿¡ ´ëÇÑ Toxicity Á¤º¸ Symptoms of overdose include diarrhea, nausea, stomach cramps, and vomiting.
Drug Interactions
Erythromycin¿¡ ´ëÇÑ Drug_Interactions Á¤º¸ Alfentanil The macrolide increases the effect and toxicity of alfentanilAlprazolam The macrolide increases the effect of the benzodiazepineAminophylline The macrolide increases the effect and toxicity of theophyllineAmiodarone Increased risk of cardiotoxicity and arrhythmiasAnisindione The macrolide increases anticoagulant effectAprepitant This CYP3A4 inhibitor increases effect and toxicity of aprepitantAstemizole Increased risk of cardiotoxicity and arrhythmiasAtorvastatin The macrolide possibly increases the statin toxicityBretylium Increased risk of cardiotoxicity and arryhthmiasBromocriptine Erythromycin increases serum levels of bromocriptineBuspirone The macrolide increases the effect and toxicity of buspironeCabergoline Erythromycin increases serum levels and toxicity of cabergolineCarbamazepine The macrolide increases the effect of carbamazepineCerivastatin The macrolide possibly increases the statin toxicityCilostazol Erythromycin increases the effect of cilostazolCinacalcet This macrolide increases the serum levels and toxicity of cinacalcetCisapride Increased risk of cardiotoxicity and arrhythmiasCitalopram Possible serotoninergic syndrome with this combinationClozapine Erythromycin increases the effect of clozapineColchicine Severe colchicine toxicity can occurCyclosporine The macrolide increases the effect of cyclosporineDiazepam The macrolide increases the effect of the benzodiazepineDicumarol The macrolide increases anticoagulant effectDigoxin The macrolide increases the effect of digoxin in 10% of patientsDihydroergotamine Possible ergotism and severe ischemia with this combinationDihydroergotoxine Possible ergotism and severe ischemia with this combinationDyphylline The macrolide increases the effect and toxicity of theophyllineDisopyramide Increased risk of cardiotoxicity and arrhythmiasDivalproex sodium Erythromycin increases the effect of valproic acidDocetaxel The agent increases the serum levels and toxicity of docetaxelDofetilide Increased risk of cardiotoxicity and arrhythmiasEletriptan The macrolide increases the effect and toxicity of eletriptanEplerenone This CYP3A4 inhibitor increases the effect and toxicity of eplerenoneErgotamine Possible ergotism and severe ischemia with this combinationErlotinib This CYP3A4 inhibitor increases levels/toxicity of erlotinibImatinib The macrolide increases levels of imatinibFelodipine Erythromycin increases the effect of felodipineFluoxetine Possible serotoninergic syndrome with this combinationGefitinib This CYP3A4 inhibitor increases levels/toxicity of gefitinibGrepafloxacin Increased risk of cardiotoxicity and arrhythmiasItraconazole The macrolide increases the effect and toxicity of itraconazoleLevofloxacin Increased risk of cardiotoxicity and arrhythmiasMesoridazine Increased risk of cardiotoxicity and arrhythmiasMethylergonovine Possible ergotism and severe ischemia with this combinationLovastatin The macrolide possibly increases the statin toxicityMethylprednisolone The macrolide increases the effect of corticosteroidMethysergide Possible ergotism and severe ischemia with this combinationMidazolam The macrolide increases the efect of the benzodiazepineMoxifloxacin Increased risk of cardiotoxicity and arrhythmiasOxtriphylline The macrolide increases the effect and toxicity of theophyllinePimozide Increased risk of cardiotoxicity and arrhythmiasQuetiapine This macrolide increases the effect/toxicity of quetiapineQuinidine Increased risk of cardiotoxicity and arrhythmiasQuinidine barbiturate Increased risk of cardiotoxicity and arrhythmiasQuinupristin This combination presents an increased risk of toxicityRanolazine Increased levels of ranolazine - risk of toxicityRepaglinide This macrolide increases effect of repaglinideRifabutin The rifamycin decreases the effect of the macrolideRifampin The rifamycin decreases the effect of the macrolideRitonavir Increased toxicity of both agentsSertraline Possible serotoninergic syndrome with this combinationSibutramine Erythromycin increases the effect and toxicity of sibutramineSildenafil The macrolide increases the effect and toxicity of sildenafilSimvastatin The macrolide possibly increases the statin toxicitySirolimus The macrolide increases sirolimus levelsSotalol Increased risk of cardiotoxicity and arrhythmiasSparfloxacin Increased risk of cardiotoxicity and arrhythmiasTacrolimus Erythromycin increases the effect and toxicity of tacrolimusTerfenadine Increased risk of cardiotoxicity and arrhythmiasTheophylline The macrolide increases the effect and toxicity of theophyllineThioridazine Increased risk of cardiotoxicity and arrhythmiasVerapamil Increased risk of cardiotoxicity and arrhythmiasTriazolam The macrolide increases the effect of the benzodiazepineVardenafil The macrolide increases the effect and toxicity of vardenafilVinblastine Erythromycin increases vinblastine toxicityWarfarin The macrolide increases anticoagulant effectZafirlukast Erythromycin decreases the effect of zafirlukastErgonovine Possible ergotism and severe ischemia with this combinationEverolimus The macrolide increases everolimus levels/toxicityLincomycin Possible antagonism of action with this combinationAcenocoumarol The macrolide increases anticoagulant effect
Erythromycin¿¡ ´ëÇÑ Food Interaction Á¤º¸ Avoid alcohol.Take on empty stomach: 1 hour before or 2 hours after meals.Take with a full glass of water Avoid taking with grapefruit juice.
Erythromycin¿¡ ´ëÇÑ Description Á¤º¸ Erythromycin is a bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. [PubChem]
The database contains the following fields: The generic name of each chemical For module A10 (liver enzyme composite module): Overall activity category for each compound (A for active, M for marginally active, or I for inactive) based on the number of active and marginally active scores for each compound at the five individual endpoints (see research article for full description of method) Number of endpoints at which each compound is marginally active (M) Number of endpoints at which each compound is active (A) For modules A11 to A15 (alkaline phosphatase increased, SGOT increased, SGPT increased, LDH increased, and GGT increased, respectively): Overall activity category for each compound (A for active, M for marginally active, or I for inactive) based on the RI and ADR values (see the research article for full description of method) Number of ADR reports for each compound, given as <4 or ¡Ã4 Reporting Index value for each compound, except where no shipping units were available (NSU) Group 1 comprises of compounds for which ADR data were available for the first five years of marketing, so when no ADR reports were listed during this period the compounds were evaluated as inactive. Group 2 comprises of compounds for which a 'steady state' period of ADR data were available (1992-1996). In cases where no ADR reports were filed during this period, the compounds were scored as 'NA' (data not available) since they may have had one or more ADR reports during their first five years of marketing which should not be negated by a lack of ADR reports during the steady-state period. ERYTHROMYCIN [GGT Increase] [Composite Activity] (Score)A (Marginal) 0 (Active) 3